Imaging ultrafast molecular dynamics

Strong laser fields and attosecond pulses can be employed to manipulate and observe molecular processes. The control of reactions with intense laser fields offers manipulation of strongly-coupled nuclear and electronic motion, which opens new photon-based reaction pathways. Tailoring the electric-field waveform of optical pulses on sub-cycle timescales opens the door to the control of electron and nuclear dynamics in molecules. In this project we use 3D-momentum imaging techniques such as velocity-map imaging (VMI) and reaction microscopy (REMI) to investigate the sub-cycle control of strong-field processes in molecules of increasing complexity. In close collaboration with theory we gain deep insight into the related coherent electron and nuclear dynamics.

Selected recent publications:
C. Burger et al., Struct. Dyn. 5, 044302 (2018)
H. Li et al., Opt. Exp. 25, 14192 (2017)
I. Yavuz et al., Phys. Rev. A 93, 033404 (2016)
M. Kübel et al., Phys. Rev. Lett. 116, 193001 (2016)
H. Li et al., Struct. Dyn. 3, 043206 (2016)

20th August 2012